organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Şerife Pınar,^a Mehmet Akkurt,^a* Ali Asghar Jarrahpour,^b Shadab Rezaei^b and Orhan Büyükgüngör^c

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and ^cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: akkurt@erciyes.edu.tr

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C}-\text{C}) = 0.006 \text{ Å}$ R factor = 0.068 wR factor = 0.214 Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis{4-[2-(2-hydroxyphenyl)ethyleneamino]phenyl} ether

In the title compound, $C_{28}H_{24}N_2O_3$, the two molecules in the asymmetric unit have different conformations about the ether bonds. The bond lengths and angles of the two molecules are nearly identical. The crystal structure is stabilized by intra-molecular $O-H\cdots N$ and intermolecular $C-H\cdots O$ hydrogen bonding.

Comment

Schiff base compounds with dinuclear systems are of increasing interest. They can serve as paramagnetic building blocks for multidimensional expanded structures. Their important roles in biological systems, e.g. in many metalloenzymes, in redox and non-redox proteins, and as a catalyst in olefin epoxidation (Karmakar et al., 2004), are documented. Schiff bases derived from 2-hydroxyacetophenone are important ligands for transition metal complexes, especially for Ni and Cu (Dietz et al., 2000). They are also interesting in hydrogen-bonding studies (Abilgaard et al., 2004). Ardakani et al. (2004) have studied the selective nitrate PVC membrane electrode from Schiff bases derived from 2-hydroxyacetophenone. A steric squeezing in ortho-hydroxy ketimines brings considerable shortening of the hydrogen bond (Filarowski et al., 2002). Pronounced dynamics of a methyl group and its influence on the hydrogen bonding have been found in NMR spectra of deutero derivatives of o-hydroxy ketones (Hansen et al., 1994). o-Hydroxyacetophenones have been used for syntheses of compounds with antimycobacterial activity; these compounds were screened against Mycobacterium tuberculosis H37Rv using the Alamar Blue susceptibility test (Sriram et al., 2005). Hydroxy Schiff bases have been synthesized from o-hydroxyacetophenone; their thermal decomposition and mass fragmentation at different temperatures were studied and compared. o-Hydroxyacetophenone Schiff bases decompose through benzimidazole derivative intermediates (Saeed et al., 1986).

The two independent molecules, (IA) and (IB) of the title compound, (I), are shown in Fig. 1. The two molecules of the

Received 15 March 2006 Accepted 21 April 2006

02056 Pinar et al. • C₂₈H₂₄N₂O₃

© 2006 International Union of Crystallography

All rights reserved

27310 measured reflections 8425 independent reflections 3164 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.118$ $\theta_{\rm max} = 26.0^{\circ}$

Figure 1

An ORTEP-3 view of the asymmetric unit of (I) with the atomnumbering scheme and 30% probability displacement ellipsoids.

asymmetric unit have nearly identical bond lengths and angles; the chemically analogous groups within each molecule also reveal close values of geometrical parameters (Table 1). In the solid state, molecules of (I) exist in a non-planar conformation. In the two molecules, the conformations about the ether bonds (involving O2 and O5) are different [for (IA), C15- $O2-C13-C12 = -12.9 (7)^{\circ}$, and for (IB), C43-O5-C40- $C39 = -96.4 (6)^{\circ}$]. In molecule (IA), the dihedral angle between planes A (C1–C6) and B (C9–C14) is $67.9 (2)^{\circ}$, and the dihedral angle between the analogous planes A' (C23-C28) and B' (C15–C20) is $63.7 (2)^{\circ}$. In molecule (IB), the corresponding angles are in good agreement with those of (IA) [the dihedral angle between the planes C (C1–C6) and D(C9–C14) is 64.5 (2)°; that between the planes C' (C9–C14) and D' (C23–C28) is 67.7 (2)°].

In the crystal structure, there are intramolecular $O-H \cdots N$ and intermolecular C-H···O hydrogen bonds connecting molecules along the b axis. (Table 2).

Experimental

2-Hydroxyacetophenone (0.272 g, 0.24 ml, 2 mmol) and 3,4'diaminodiphenylether (0.33 g, 1 mmol) were dissolved in warm ethanol (10 ml). The reaction mixture was refluxed for 10 h and allowed to stand aside. Yellow crystals were filtered off and washed with ethanol. The pure Schiff base was recrystallized as plate-like colourless crystals from ethanol (yield 78%). M.p. 455-457 K. IR (KBr, ν , cm⁻¹): 3244 (OH), 1620 (C=N). ¹H NMR (250 MHz, CDCl₃): 1.65 (6H, s, CH₃), 6.21 (2H, d, Ar), 6.24 (2H, d, Ar), 6.88-7.64 (5H, m, Ar), 7.94 (2H, d, Ar), 14.57 (2H, s, OH). ¹³C NMR (62.9 MHz, CDCl₃): 17.11, 17.22, 30.91, 111.26, 114.56, 115.99, 118.13, 118.23, 119.94, 122.82, 128.93, 130.25, 133.07, 133.20, 142.73, 145.60, 146.60, 148.63, 153.73, 158.29, 161.98, 171.60 (C=N).

Crystal data

$C_{28}H_{24}N_2O_3$	V = 2228.4 (3) Å ³
$M_r = 436.49$	Z = 4
Triclinic, P1	$D_x = 1.301 \text{ Mg m}^{-3}$
a = 9.4897 (8) Å	Mo $K\alpha$ radiation
b = 10.4644 (8) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 22.8605 (19) Å	T = 296 K
$\alpha = 96.588 \ (6)^{\circ}$	Plate, colourless
$\beta = 98.781 \ (7)^{\circ}$	$0.35 \times 0.26 \times 0.08 \text{ mm}$
$\gamma = 89.957 \ (6)^{\circ}$	

Data collection

Stoe IPDS-2 diffractometer
w scans
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
T = 0.071 T = 0.003

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.068$	$w = 1/[\sigma^2(F_o^2) + (0.0985P)^2]$
$wR(F^2) = 0.214$	where $P = (F_0^2 + 2F_c^2)/3$
S = 0.89	$(\Delta/\sigma)_{\rm max} < 0.001$
8425 reflections	$\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$
596 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

1.345 (5)	N1-C7	1.291 (5)
1.390 (6)	N1-C9	1.426 (5)
1.393 (5)	N2-C18	1.405 (5)
1.349 (5)	N2-C22	1.295 (5)
1.360 (5)	N3-C37	1.412 (5)
1.407 (5)	N3-C35	1.293 (5)
1.396 (6)	N4-C50	1.288 (5)
1.347 (5)	N4-C47	1.427 (5)
118 5 (4)	N2 - C22 - C23	1173(4)
118.9(4)	$03 - C^{24} - C^{23}$	121.3 (3)
122.8 (3)	03 - C24 - C25	118.5 (4)
122.7(3)	04 - C30 - C31	116.7 (4)
122.1(3)	O4-C30-C29	122.8 (3)
122.6 (3)	N3-C35-C36	124.5 (3)
119.1 (4)	N3-C35-C29	116.6 (3)
121.0 (3)	N3-C37-C42	119.3 (4)
123.2 (3)	N3-C37-C38	122.2 (4)
117.9 (4)	O5-C40-C41	119.6 (5)
119.4 (4)	O5-C40-C39	118.3 (5)
122.3 (4)	O5-C43-C44	122.6 (4)
115.3 (4)	O5-C43-C48	115.6 (4)
123.7 (4)	N4-C47-C48	122.3 (4)
118.2 (5)	N4-C47-C46	118.8 (4)
120.6 (5)	N4-C50-C51	118.5 (4)
121.7 (4)	N4-C50-C49	122.9 (3)
119.6 (4)	O6-C52-C51	122.4 (3)
123.7 (3)	O6-C52-C53	117.7 (4)
	$\begin{array}{c} 1.345 \ (5) \\ 1.390 \ (6) \\ 1.393 \ (5) \\ 1.349 \ (5) \\ 1.360 \ (5) \\ 1.407 \ (5) \\ 1.396 \ (6) \\ 1.347 \ (5) \\ \end{array}$ $\begin{array}{c} 118.5 \ (4) \\ 118.9 \ (4) \\ 122.8 \ (3) \\ 122.7 \ (3) \\ 122.1 \ (3) \\ 122.6 \ (3) \\ 119.1 \ (4) \\ 121.0 \ (3) \\ 123.2 \ (3) \\ 117.9 \ (4) \\ 119.4 \ (4) \\ 1123.7 \ (4) \\ 118.2 \ (5) \\ 120.6 \ (5) \\ 121.7 \ (4) \\ 119.6 \ (4) \\ 123.7 \ (3) \\ \end{array}$	1.345 (5) N1-C7 1.390 (6) N1-C9 1.393 (5) N2-C18 1.349 (5) N2-C22 1.360 (5) N3-C37 1.407 (5) N3-C35 1.396 (6) N4-C50 1.347 (5) N4-C47 118.5 (4) N2-C22-C23 118.9 (4) O3-C24-C23 122.8 (3) O3-C24-C25 122.7 (3) O4-C30-C31 122.1 (3) O4-C30-C29 122.6 (3) N3-C37-C42 123.2 (3) N3-C37-C42 123.2 (3) N3-C37-C42 123.2 (3) N3-C37-C38 117.9 (4) O5-C40-C41 119.4 (4) O5-C43-C44 115.3 (4) O5-C43-C48 123.7 (4) N4-C47-C48 118.2 (5) N4-C47-C48 118.2 (5) N4-C47-C46 120.6 (5) N4-C50-C51 121.7 (4) N4-C50-C51 121.7 (4) O6-C52-C51 123.7 (3) O6-C52-C51

Lable 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1\cdots N1$	0.82	1.82	2.546 (4)	148
$O3-H3A\cdots N2$	0.82	1.80	2.531 (4)	148
$O4-H4A\cdots N3$	0.82	1.81	2.536 (4)	146
$O6-H6A\cdots N4$	0.82	1.93	2.556 (4)	133
$C8-H8B\cdots O3^{i}$	0.96	2.63	3.313 (5)	129
$C21 - H21B \cdot \cdot \cdot O1^{ii}$	0.96	2.59	3.254 (5)	126
C36−H36C···O6 ⁱⁱⁱ	0.96	2.58	3.241 (5)	126
$C49-H49B\cdots O4^{iv}$	0.96	2.61	3.301 (5)	129
Symmetry codes: (i)	$-r - v \perp 1$	-7 ± 1 (ii)	$-r \perp 1 - \nu \perp 1$	-7 ± 1 (iii)

-y + 2, -z + 1; (iv) -x + 1, -y + 2, -z + 1.

All H atoms were placed in calculated positions (C-H = 0.93-0.96 Å and O-H = 0.82 Å) and included in the refinement in the riding mode, with $U_{\rm iso}$ constrained to be $1.2U_{\rm eq}$ of the carrier C atom $(1.5U_{eq}$ for methyl and hydroxy H atoms).

organic papers

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, for the use of the diffractometer (purchased under grant F.279 of the University Research Fund). AAJ and SR thank the Shiraz University Research Council for financial support (grant No. 84-GR-SC-23).

References

Abilgaard, J., Bolvig, S. & Hansen, P. E. (2004). J. Mol. Struct. 700, 67-72.

- Ardakani, M. M., Salavati-Niasari, M. & Jamshidpoor, M. (2004). Sens. Actuators B Chem. 101, 302–307.
- Dietz, C., Heinemann, F. W. & Grohmann, A. (2000). Z. Naturforsch. Teil B, 55, 1037–1044.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Filarowski, A., Koll, A. & Glowiak, T. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 835–842.
- Hansen, P. E., Ibsen, S. N., Kristensen, T. & Bolvig, S. (1994). Magn. Reson. Chem. 32, 399–408.
- Karmakar, R., Choudhury, C. R., Bravic, G., Sutter, J. P. & Mitra, S. (2004). Polyhedron, 23, 949–954.
- Saeed, A. A. H., Ebraheem, E. K. & Tossonian, A. A. (1986). *Thermochim. Acta*, **97**, 337–343.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sriram, D., Yogeeswari, P. & Madhu, K. (2005). Bioorg. Med. Chem. Lett. 15, 4502–4505.
- Stoe & Cie (2002). *X-AREA* (Version 1.18) and *X-RED32* (Version 1.04). Stoe & Cie, Darmstadt, Germany.